你的位置:首頁 > 產(chǎn)品展示 > 光纖器件 > 光纖跳線 >Thorlabs光纖部分反射器
產(chǎn)品詳細(xì)頁Thorlabs光纖部分反射器
- 產(chǎn)品型號:
- 更新時(shí)間:2023-12-19
- 產(chǎn)品介紹:Thorlabs光纖部分反射器可以在光纖中將1260 - 1620納米波長的光波反射48 ± 2%。透射光從鍍膜接頭中出射,而反射光則直接返回光纖當(dāng)中。其部分反射末端用一個(gè)光滑的黑色護(hù)套進(jìn)行標(biāo)記,并標(biāo)有部件號。鍍膜末端用于自由空間應(yīng)用(即準(zhǔn)直),如果與其它接頭末端接觸會損壞鍍膜.
- 廠商性質(zhì):代理商
- 在線留言
產(chǎn)品介紹
品牌 | Thorlabs | 價(jià)格區(qū)間 | 面議 |
---|---|---|---|
組件類別 | 光學(xué)元件 | 應(yīng)用領(lǐng)域 | 電子,航天 |
Thorlabs光纖部分反射器
Thorlabs的光纖部分反射器設(shè)計(jì)用于將部分入射光向后反射回到輸入端,同時(shí)將剩下的光透射出輸出端。鍍分束膜的跳線利用一個(gè)接頭端面的分束鍍膜反射,非常適用于光纖到自由空間的應(yīng)用,而嵌入式部分反射器利用內(nèi)部的反射鍍膜,非常適用于全光纖應(yīng)用。
光纖跳線,鍍分束膜
Single Mode or Multimode Fiber Optic 50:50 Partial Reflector
Coating Ranges from 1260 - 1620 nm
FC/PC or FC/APC Connectors
Thorlabs光纖部分反射器?特性
單?;蚨嗄9饫w部分反射器
鍍膜一端對于1260 - 1620納米的波長可以實(shí)現(xiàn)48 ± 2%的反射率
適合用于高功率為300毫瓦的激光
提供帶有FC/PC或FC/APC接頭的單模分束器
接線長1米
Thorlabs公司的光纖部分反射器可以在光纖中將1260 - 1620納米波長的光波反射48 ± 2%(請參看右圖)。透射光從鍍膜接頭中出射,而反射光則直接返回光纖當(dāng)中。其部分反射末端用一個(gè)光滑的黑色護(hù)套進(jìn)行標(biāo)記,并標(biāo)有部件號(請參看上圖)。鍍膜末端用于自由空間應(yīng)用(即準(zhǔn)直),如果與其它接頭末端接觸會損壞鍍膜。當(dāng)該反射器與一個(gè)光纖環(huán)形器偶合時(shí),它可以作為分束裝置,并且不需要將光束偶合到自由空間中,這樣就不需要使用非偏振分束立方體(請參看應(yīng)用標(biāo)簽了解更多細(xì)節(jié))。
這些反射器接有后長1米的光纖,可以是單模(SM)或多模(MM)光纖。SM部分反射器帶有FC/PC或FC/APC接頭。由于部分反射末端的插芯經(jīng)過鍍膜處理,因此我們建議將該光纖末端與一個(gè)光纖準(zhǔn)直器配合使用。鍍膜接頭末端不應(yīng)該與匹配套管一起使用,這樣會對鍍膜造成損壞。對于全光纖應(yīng)用,請看我們的嵌入式部分反射器。
每一個(gè)跳線都包含兩個(gè)保護(hù)帽用來隔離灰塵和臟物。額外用于FC/PC和FC/APC接頭的CAPF塑料光纖帽和CAPFM金屬螺紋光纖帽可以單獨(dú)購買。
跳線可以通過匹配套管進(jìn)行偶合,它可以將后向反射小化,并保證光纖的可連接末端之間能夠有效對準(zhǔn)。它們很實(shí)用與這些光纖的未鍍膜接頭配合使用。我們還提供10:90、30:70、70:30和90:10的定制反射:透射鍍膜。請聯(lián)系Thorlabs公司的技術(shù)支持探討更多定制選項(xiàng)。
清潔鍍增透膜的接頭端且不損壞鍍膜的方法有好幾種。將壓縮空氣輕輕噴在接頭端是比較理想的做法。其他方法包括使用浸有異丙醇或甲醇的無絨光學(xué)擦拭紙或FCC-7020光纖接頭清潔器輕輕擦拭。但是請不要使用干的擦拭紙,因?yàn)榭赡軙p壞增透膜涂層。
這些光纖部分反射器上的鍍膜接頭可以通過光滑的黑色護(hù)套進(jìn)行辨認(rèn)。
50:50光纖部分反射器的反射率
Coated Patch Cables Selection Guide |
Single Mode AR-Coated Patch Cables |
TEC Single Mode AR-Coated Patch Cables |
Polarization-Maintaining AR-Coated Patch Cables |
Multimode AR-Coated Patch Cables |
HR-Coated Patch Cables |
Beamsplitter-Coated Patch Cables |
應(yīng)用
光纖部分反射器在產(chǎn)生諸如非偏振分束器、激光諧振腔和干涉儀等各種器件時(shí)十分有效。這些光纖反射器可以將48 ± 2%的光反射回光纖中,同時(shí)讓剩余的光從鍍膜接頭出射。該特性在非偏振分束器尤為有效,可以讓用戶在自由空間偶合時(shí)不需要使用非偏振分束立方體就可以對光源進(jìn)行分光。圖1顯示了由一個(gè)光纖環(huán)形器和一個(gè)光纖部分反射器構(gòu)成的這種簡單裝置。其中,光從環(huán)形器的端口1入射,部分反射器偶合到端口2上。輸入光從端口1傳遞到端口2;這時(shí),大約50%的光從鍍膜末端出射,剩余的光束將被反射回光纖中,并從端口3出射。
圖1:全光纖非偏振分束器
圖2:一個(gè)用部分反射器構(gòu)成的全光纖法布里-珀羅涉儀
圖2顯示了這些器件如何用于構(gòu)建光纖激光器的實(shí)例。其中,一個(gè)光纖后向反射器置于摻餌光纖的末端,讓光朝著入射光方向反射回光纖中。用一個(gè)WDM將輸入和激光輸出光束導(dǎo)向適當(dāng)?shù)墓饴分校敵龉饴分械牟糠址瓷淦鳛榧す庵C振腔提供反饋信號。
多模光纖教程
在光纖中引導(dǎo)光
光纖屬于光波導(dǎo),光波導(dǎo)是一種更為廣泛的光學(xué)元件,可以利用全內(nèi)反射(TIR)在固體或液體結(jié)構(gòu)中限制并引導(dǎo)光。光纖通??梢栽诒姸鄳?yīng)用中使用;常見的例子包括通信、光譜學(xué)、照明和傳感器。
比較常見的玻璃(石英)纖維使用一種稱之為階躍折射率光纖的結(jié)構(gòu),如右圖所示。這種光纖的纖芯由一種折射率比外面包層高的材料構(gòu)成。在光纖中以臨界角入射時(shí),光會在纖芯/包層界面產(chǎn)生全反射,而不會折射到周圍的介質(zhì)中。為了達(dá)到TIR的條件,發(fā)射到光纖中入射光的角度必須小于某個(gè)角度,即接收角,θacc。根據(jù)斯涅耳定律可以計(jì)算出這個(gè)角:
其中,ncore為纖芯的折射率,nclad為光纖包層的折射率,n為外部介質(zhì)的折射率,θcrit為臨界角,θacc為光纖的接收半角。數(shù)值孔徑(NA)是一個(gè)無量綱量,由光纖制造商用來確定光纖的接收角,表示為:
對于芯徑(多模)較大的階躍折射率光纖,使用這個(gè)等式可以直接計(jì)算出NA。NA也可以由實(shí)驗(yàn)確定,通過追蹤遠(yuǎn)場光束分布并測量光束中心與光強(qiáng)為大光強(qiáng)5%的點(diǎn)之間的角度即可;但是,直接計(jì)算NA得出的值更為準(zhǔn)確。
光纖的全內(nèi)反射
光纖中的模式數(shù)量
光在光纖中傳播的每種可能路徑即為光纖的導(dǎo)模。根據(jù)纖芯/包層區(qū)域的尺寸、折射率和波長,單光纖內(nèi)可支持從一種到數(shù)千種模式。而其中常使用兩種為單模(支持單導(dǎo)模)和多模(支持多種導(dǎo)模)。在多模光纖中,低階模傾向于在空間上將光限制在纖芯內(nèi);而高階模傾向于在空間上將光限制在纖芯/包層界面的附近。
使用一些簡單的計(jì)算就可以估算出光纖支持的模(單?;蚨嗄?的數(shù)量。歸一化頻率,也就是常說的V值,是一個(gè)無量綱的數(shù),與自由空間頻率成比例,但被歸為光纖的引導(dǎo)屬性。V值表示為:
其中V為歸一化頻率(V值),a為纖芯半徑,λ為自由空間波長。多模光纖的V值非常大;例如,芯徑為Ø50 µm、數(shù)值孔徑為0.39的多模光纖,在波長為1.5 µm時(shí),V值為40.8。
對于具有較大V值的多模光纖,可以使用下式近似計(jì)算其支持的模式數(shù)量:
上面例子中,芯徑為Ø50 µm、NA為0.39的多模光纖支持大約832種不同的導(dǎo)模,這些模可以同時(shí)穿過光纖。
單模光纖V值必須小于截止頻率2.405,這表示在這個(gè)時(shí)候,光只耦合到光纖的基模中。為了滿足這個(gè)條件,單模光纖的纖芯尺寸和NA要遠(yuǎn)小于同波長下的多模光纖。例如SMF-28超單模光纖的標(biāo)稱NA為0.14,芯徑為Ø8.2 µm,在波長為1550
nm時(shí),V值為2.404。
衰減來源
光纖損耗,也稱之為衰減,是光纖的特性,可以通過量化來預(yù)測光纖裝置內(nèi)的總透射功率損耗。這些損耗來源一般與波長相關(guān),因光纖的使用材料或光纖的彎曲等而有所差異。常見衰減來源的詳情如下:
吸收標(biāo)準(zhǔn)光纖中的光通過固體材料引導(dǎo),因此,光在光纖中傳播會因吸收而產(chǎn)生損耗。標(biāo)準(zhǔn)光纖使用熔融石英制造,經(jīng)優(yōu)化可在波長1300 nm-1550 nm的范圍內(nèi)傳播。波長更長(>2000
nm)時(shí),熔融石英內(nèi)的多聲子相互作用造成大量吸收。使用氟化鋯、氟化銦等氟氧物玻璃制造中紅外光纖,主要是因?yàn)樗鼈兲幱谶@些波長范圍時(shí)損耗較低。氟化鋯、氟化銦的多聲子邊分別為~3.6 µm和~4.6 µm。
光纖內(nèi)的污染物也會造成吸收損耗。其中一種污染物就是困在玻璃纖維中的水分子,可以吸收波長在1300 nm和2.94 µm的光。由于通信信號和某些激光器也是在這個(gè)區(qū)域里工作,光纖中的任意水分子都會明顯地衰減信號。
玻璃纖維中離子的濃度通常由制造商控制,以便調(diào)節(jié)光纖的傳播/衰減屬性。例如,石英中本來就存在羥基(OH-),可以吸收近紅外到紅外光譜的光。因此,羥基濃度較低的光纖更適合在通信波長下傳播。而羥基濃度較高的光纖在紫外波長范圍時(shí)有助于傳播,因此,更適合對熒光或UV-VIS光譜學(xué)等應(yīng)用感興趣的用戶。
散射對于大多數(shù)光纖應(yīng)用來說,光散射也是損耗的來源,通常在光遇到介質(zhì)的折射率發(fā)生變化時(shí)產(chǎn)生。這些變化可以是由雜質(zhì)、微?;驓馀菀鸬耐庠谧兓灰部梢允怯刹A芏鹊牟▌?、成分或相位態(tài)引起的內(nèi)在變化。散射與光的波長呈負(fù)相關(guān)關(guān)系,因此,在光譜中的紫外或藍(lán)光區(qū)域等波長較短時(shí),散射損耗會比較大。使用恰當(dāng)?shù)墓饫w清潔、操作和存儲存步驟可以盡可能地減少光纖*的雜質(zhì),避免產(chǎn)生較大的散射損耗。
彎曲損耗因光纖的外部和內(nèi)部幾何發(fā)生變化而產(chǎn)生的損耗稱之為彎曲損耗。通常包含兩大類:宏彎損耗和微彎損耗。
宏彎損耗一般與光纖的物理彎曲相關(guān);例如,將其卷成圈。如右圖所示,引導(dǎo)的光在空間上分布在光纖的纖芯和包層區(qū)域。以某半徑彎曲光纖時(shí),在彎曲外半徑的光不能在不超過光速時(shí)維持相同的空間模分布。相反,由于輻射能量會損耗到周邊環(huán)境中。彎曲半徑較大時(shí),與彎曲相關(guān)的損耗會比較?。坏珡澢霃叫∮诠饫w的推薦彎曲半徑時(shí),彎曲損耗會非常大。光纖可以在彎曲半徑較小時(shí)進(jìn)行短時(shí)間工作;但如果要長期儲存,彎曲半徑應(yīng)該大于推薦值。使用恰當(dāng)?shù)膬Υ鏃l件(溫度和彎曲半徑)可以降低對光纖造成損傷的幾率;FSR1光纖纏繞盤設(shè)計(jì)用來大程度地減少高彎曲損耗。
微彎損耗由光纖的內(nèi)部幾何,尤其是纖芯和包層發(fā)生變化而產(chǎn)生。光纖結(jié)構(gòu)中的這些隨機(jī)變化(即凸起)會破壞全內(nèi)反射所需的條件,使得傳播的光耦合到非傳播模中,造成泄露(詳情請看右圖)。與由彎曲半徑控制的宏彎損耗不同,微彎損耗是由制造光纖時(shí)在光纖內(nèi)造成的缺陷而產(chǎn)生。
宏彎損耗造成的衰減
微彎損耗造成的衰減
包層模雖然多模光纖中的大多數(shù)光通過纖芯內(nèi)的TIR引導(dǎo),但是由于TIR發(fā)生在包層與涂覆層/保護(hù)層的界面,在纖芯和包層內(nèi)引導(dǎo)光的高階模也可能存在。這樣就產(chǎn)生了我們所熟知的包層模。這樣的例子可在右邊的光束分布測量中看到,其中體現(xiàn)了包層模包層中的光強(qiáng)比纖芯中要高。這些??梢圆粋鞑?即它們不滿足TIR的條件),也可以在一段很長的光纖中傳播。由于包層模一般為高階模,在光纖彎曲和出現(xiàn)微彎缺陷時(shí),它們就是損耗的來源。通過接頭連接兩個(gè)光纖時(shí)包層模會消失,因?yàn)樗鼈儾荒茉诠饫w之間輕松耦合。
由于包層模對光束空間輪廓的影響,有些應(yīng)用(比如發(fā)射到自由空間中)中可能不需要包層模。光纖較長時(shí),這些模會自然衰減。對于長度小于10 m的光纖,消除包層模的一種辦法就是將光纖纏繞在半徑合適的芯軸上,這樣能保留需要的傳播模式。
在FT200EMT多模光纖與M565F1 LED的光束輪廓中,展現(xiàn)了包層而不是纖芯引導(dǎo)的光。
入纖方式
多模光纖未充滿條件對于在NA較大時(shí)接收光的多模光纖來說,光耦合到光纖的的條件(光源類型、光束直徑、NA)對性能有著極大影響。在耦合界面,光的光束直徑和NA小于光纖的芯徑和NA時(shí),就出現(xiàn)了未充滿的入纖條件。這種情況的常見例子就是將激光光源發(fā)射到較大的多模光纖。從下面的圖和光束輪廓測量可以看出,未充滿時(shí)會使光在空間上集中到光纖的中心,優(yōu)先充滿低階模,而非高階模。因此,它們對宏彎損耗不太敏感,也沒有包層模。這種條件下,所測的插入損耗也會小于典型值,光纖纖芯處有著較高的功率密度。
展示未充滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測量(右邊)。
多模光纖過滿條件在耦合界面,光束直徑和NA大于光纖的芯徑和NA時(shí)就出現(xiàn)了過滿的情況。實(shí)現(xiàn)這種條件的一個(gè)方法就是將LED光源的光發(fā)射到較小的多模光纖中。過滿時(shí)會將整個(gè)纖芯和部分包層裸露在光中,均勻充滿低階模和高階模(請看下圖),增加耦合到光纖包層模的可能性。高階模比例的增加意味著過滿光纖對彎曲損耗會更為敏感。在這種條件下,所測的插入損耗會大于典型值,與未充滿光纖條件相比,會產(chǎn)生較高的總輸出功率。
展示過滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測量(右邊)。
多模光纖未充滿或過滿條件各有優(yōu)劣,這取決于特定應(yīng)用的要求。如需測量多模光纖的基準(zhǔn)性能,Thorlabs建議使用光束直徑為光纖芯徑70-80%的入纖條件。過滿條件在短距離時(shí)輸出功率更大;而長距離(>10 - 20 m)時(shí),對衰減較為敏感的高階模會消失。
損傷閥值
激光誘導(dǎo)的光纖損傷
以下教程詳述了無終端(裸露的)、有終端光纖以及其他基于激光光源的光纖元件的損傷機(jī)制,包括空氣-玻璃界面(自由空間耦合或使用接頭時(shí))的損傷機(jī)制和光纖玻璃內(nèi)的損傷機(jī)制。諸如裸纖、光纖跳線或熔接耦合器等光纖元件可能受到多種潛在的損傷(比如,接頭、光纖端面和裝置本身)。光纖適用的大功率始終受到這些損傷機(jī)制的小值的限制。
雖然可以使用比例關(guān)系和一般規(guī)則估算損傷閾值,但是,光纖的損傷閾值在很大程度上取決于應(yīng)用和特定用戶。用戶可以以此教程為指南,估算大程度降低損傷風(fēng)險(xiǎn)的安全功率水平。如果遵守了所有恰當(dāng)?shù)闹苽浜瓦m用性指導(dǎo),用戶應(yīng)該能夠在的大功率水平以下操作光纖元件;如果有元件并未大功率,用戶應(yīng)該遵守下面描述的"實(shí)際安全水平"該,以安全操作相關(guān)元件??赡芙档凸β蔬m用能力并給光纖元件造成損傷的因素包括,但不限于,光纖耦合時(shí)未對準(zhǔn)、光纖端面受到污染或光纖本身有瑕疵。關(guān)于特定應(yīng)用中光纖功率適用能力的深入討論,請聯(lián)系技術(shù)支持techsupport-cn@thorlabs.com。
空氣-玻璃界面的損傷
空氣/玻璃界面有幾種潛在的損傷機(jī)制。自由空間耦合或使用光學(xué)接頭匹配兩根光纖時(shí),光會入射到這個(gè)界面。如果光的強(qiáng)度很高,就會降低功率的適用性,并給光纖造成損傷。而對于使用環(huán)氧樹脂將接頭與光纖固定的終端光纖而言,高強(qiáng)度的光產(chǎn)生的熱量會使環(huán)氧樹脂熔化,進(jìn)而在光路中的光纖表面留下殘留物。
損傷的光纖端面
未損傷的光纖端面
所有值針對無終端(裸露)的石英光纖,適用于自由空間耦合到潔凈的光纖端面。
這是可以入射到光纖端面且沒有損傷風(fēng)險(xiǎn)的大功率密度估算值。用戶在高功率下工作前,必須驗(yàn)證系統(tǒng)中光纖元件的性能與可靠性,因其與系統(tǒng)有著緊密的關(guān)系。
這是在大多數(shù)工作條件下,入射到光纖端面且不會損傷光纖的安全功率密度估算值。
插芯/接頭終端相關(guān)的損傷機(jī)制
有終端接頭的光纖要考慮更多的功率適用條件。光纖一般通過環(huán)氧樹脂粘合到陶瓷或不銹鋼插芯中。光通過接頭耦合到光纖時(shí),沒有進(jìn)入纖芯并在光纖中傳播的光會散射到光纖的外層,再進(jìn)入插芯中,而環(huán)氧樹脂用來將光纖固定在插芯中。如果光足夠強(qiáng),就可以熔化環(huán)氧樹脂,使其氣化,并在接頭表面留下殘?jiān)?。這樣,光纖端面就出現(xiàn)了局部吸收點(diǎn),造成耦合效率降低,散射增加,進(jìn)而出現(xiàn)損傷。
與環(huán)氧樹脂相關(guān)的損傷取決于波長,出于以下幾個(gè)原因。一般而言,短波長的光比長波長的光散射更強(qiáng)。由于短波長單模光纖的MFD較小,且產(chǎn)生更多的散射光,則耦合時(shí)的偏移也更大。
為了大程度地減小熔化環(huán)氧樹脂的風(fēng)險(xiǎn),可以在光纖端面附近的光纖與插芯之間構(gòu)建無環(huán)氧樹脂的氣隙光纖接頭。我們的高功率多模光纖跳線就使用了這種設(shè)計(jì)特點(diǎn)的接頭。
曲線圖展現(xiàn)了帶終端的單模石英光纖的大概功率適用水平。每條線展示了考慮具體損傷機(jī)制估算的功率水平。大功率適用性受到所有相關(guān)損傷機(jī)制的低功率水平限制(由實(shí)線表示)。
單模50:50部分反射器
| ||||||||||||||
|
Item # | Fiber | Coating Wavelength | MFDc | Cladding | Coating | NA | Connector |
P1-SMF28ER-50-1a | SMF-28 Ultra | 1260 - 1620 nm | 9.2 ± 0.4 µm @ 1310 nm 10.4 ± 0.5 µm @ 1550 nm | 125 ± 0.7 µm | 242 ± 5 µm | 0.14 | FC/PC |
P5-SMF28ER-50-1a | FC/APC |
a. 所有規(guī)格都基于無端接頭的光纖數(shù)據(jù)
b. 這些光纖上使用的部分反射率鍍膜專為1260 - 1620 nm的波長而設(shè)計(jì)。本跳線中所用的SMF-28 Ultra光纖的工作波長范圍是1260 - 1625 nm
c. 模場直徑(MFD)是標(biāo)稱計(jì)算值,在工作波長下通過典型NA值和光纖的截止波長進(jìn)行估算
產(chǎn)品型號 | 公英制通用 |
P1-SMF28ER-50-1 | Customer Inspired! 單模50:50部分反射器,1260 - 1620納米,F(xiàn)C/PC接頭 |
P5-SMF28ER-50-1 | 單模50:50部分反射器,1260 - 1620納米,F(xiàn)C/APC接頭 |
多模50:50部分反射器
Item # | Fiber | Coating Wavelength | Core Diameter | Cladding | Coating | NA | Connector |
M105L01-50-1a | FG105LCA | 1260 - 1620 nm | 105 µm ± 2% | 125 ±1 µm | 250 µm ± 5% | 0.22 ± 0.02 | FC/PC |
a. 所有規(guī)格數(shù)據(jù)都基于未端接光纖
b. 這些光纖上采用的部分反射鍍膜設(shè)計(jì)用于1260 - 1620納米的波長。盡管光纖的工作波長范圍為400 - 2400納米,但該鍍膜限制了部分反射器的工作波長范圍。
產(chǎn)品型號 | 公英制通用 |
M105L01-50-1 | 多模50:50部分反射器,1260 - 1620納米,F(xiàn)C/PC接頭 |
嵌入式部分反射器
· Partial Reflectors with Internal Reflective Coating
· 1450 nm - 1650 nm Wavelength Range
· 67:33 or 10:90 Reflection Ratio (R:T)
· Available with FC/PC or FC/APC Connectors
特性
· 部分反射器,用于嵌入式光纖應(yīng)用
· 內(nèi)部鍍有反射膜,反射率(R:T)為67:33或10:90
· 波長范圍1450 nm - 1650 nm
· 提供具有2.0 mm窄鍵FC/PC或FC/APC接頭的版本
Thorlabs的嵌入式部分反射器用于反射部分輸入光;即一部分光反射回到輸入端,而另一部分則透射到輸出端。通過分離輸入光,然后利用里面鍍的反射膜,將光引回輸入端。與我們的鍍分束膜的光纖跳線不同,它的接頭端都未鍍膜;因此,這些部分反射器可以連接到其他光纖跳線,*實(shí)現(xiàn)嵌入式操作。與單模光纖環(huán)形器一起使用時(shí),這些反射器可以作為全光纖分束裝置(請看應(yīng)用標(biāo)簽),非常適合往返延遲計(jì)時(shí)等應(yīng)用。
這些部分反射器的單模波長范圍為1450 nm - 1650 nm,反射率為67:33或10:90。反射率(R:T)是指反射光與透射光之比,不包括由于吸收而在裝置中損失的光。白色端口用作輸入端;請注意,這些部分反射器不能反方向使用。庫存提供的部分反射器帶有FC/PC或FC/APC接頭,如下表所示。光纖引線包裹在Ø900 µm Hytrel®套管中,引線長為0.8 m。我們也提供具有其他波長、光纖類型或R:T 比的自定義配置;詳情請聯(lián)系技術(shù)支持。
每個(gè)部分反射器包含兩個(gè)防護(hù)蓋,可以防止插芯端受到灰塵或其他損害。其他用于FC/PC-和FC/APC-端的CAPF塑料防塵蓋和CAPFM金屬螺紋防塵蓋單獨(dú)出售。我們也提供匹配套管,可以耦合光纖跳線,大程度減少背向反射,確保帶接頭的纖芯準(zhǔn)確對準(zhǔn)。
應(yīng)用
全光纖分束
部分反射器可用于制造多種裝置,比如分束器、激光腔和干涉儀。這些光纖將部分光反射回光纖,將剩下的光透射到輸出光纖接頭。
這種特性尤其適合制造全光纖分束器;用戶使用分束立方,且無需自由空間耦合,就可以使光分束。圖 1展現(xiàn)了由光纖環(huán)形器和部分反射器組成的簡單裝置。光從環(huán)形器的Port 1輸入,通過部分反射器耦合到Port 2。輸入光從Port 1耦合到Port 2;大約有33%的光通過光纖輸出端透射,剩下的光返回到輸入端,被環(huán)形器引導(dǎo)Port 3。
圖 1:全光纖分束裝置
反射率(R:T)67:33
tem #a | Center Wavelength | Bandwidth | Reflectanceb (Click for Plot) | Transmissionc (Click for Plot) | Reflection Ratiod | Fiber Typed | Termination |
RW1550R3F | 1550 nm | ±100 nm | 45.0 ± 4.5% (3.5 ± 0.4 dB) | 22.5 ± 2.5% (6.5 ± 0.5 dB) | 67:33 | SMF-28e+ | FC/PC |
RW1550R3A | FC/APC |
a. 所有值的測量條件為在室溫環(huán)境下,帶寬范圍內(nèi),以白色端作為輸入端,且?guī)Ы宇^。
b. 在白色端的總反射輸出
c. 在紅色端的總透射輸出
d. 反射輸出與透射輸出之比
e. 根據(jù)要求可提供其他光纖類型;詳情請聯(lián)系技術(shù)支持。
產(chǎn)品型號 | 公英制通用 |
RW1550R3F | 嵌入式部分反射器,1550 ± 100 nm,R:T為67:33,F(xiàn)C/PC接頭 |
RW1550R3A | 嵌入式部分反射器,1550 ± 100 nm,R:T為67:33,F(xiàn)C/APC接頭 |
反射率(R:T)10:90
tem #a | Center Wavelength | Bandwidth | Reflectanceb (Click for Plot) | Transmissionc (Click for Plot) | Reflection Ratiod | Fiber Typed | Termination |
RW1550R2F | 1550 nm | ±100 nm | 7.2 ± 2.7% (11.4 ± 2.0 dB) | 65.0 ± 5.0% (1.9 ± 0.1 dB) | 10:90 | SMF-28e+ | FC/PC |
RW1550R2A | FC/APC |
a. 所有值的測量條件為在室溫環(huán)境下,帶寬范圍內(nèi),以白色端作為輸入端,且?guī)Ы宇^。
b. 在白色端的總反射輸出
c. 在紅色端的總透射輸出
d. 反射輸出與透射輸出之比
e. 根據(jù)要求可提供其他光纖類型;詳情請聯(lián)系技術(shù)支持。
產(chǎn)品型號 | 公英制通用 |
RW1550R2F | Customer Inspired! 嵌入式部分反射器,1550 ± 100 nm,R:T為10:90,F(xiàn)C/PC接頭 |
RW1550R2A | Customer Inspired! 嵌入式部分反射器,1550 ± 100 nm,R:T為10:90,F(xiàn)C/APC接頭 |
損傷的光纖端面
- 下一篇:Thorlabs光纖后向反射器